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ABSTRACT 

We adopt the Heston (1993) stochastic volatility (SV) model framework to examine 

the theoretical relationship between the term structure of implied volatility and the 

expected excess returns of underlying assets. Three alternative approaches are adopted 

for our compilation of the variables representing the information on the squared VIX 

level and term structure in support of our empirical investigation of the information 

content of the level and term structure variables on future excess returns in the S&P 

500 index. Our empirical results provide support for the important role of the term 

structure in the determination of future excess returns, with such predictive power 

being discernible for various horizons. Overall, the information content of the term 

structure variable is found to be significant, and indeed, a strong complement to that 

of the level variable. In particular, due to the mean-reversion behavior of volatility, the 

information in the term structure of implied volatility is found to be very effective in 

the prediction of shorter-term excess returns. 
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1.  INTRODUCTION 

According to the methodology proposed by the CBOE for the implementation of the 

model-free implied volatility formula (developed by Jiang and Tian, 2005),1 the 

computation of the implied volatility index (VIX) is based upon consideration of all 

of the available market prices of the S&P 500 index options. Such an approach 

facilitates the approximation of the expected aggregate volatility of the S&P 500 

index during the subsequent 30 calendar-day period,2 and indeed, this method has 

been used not only as a measure of sentiment, but also as an instrument for timing 

the market, particularly in the aftermath of the sub-prime mortgage crisis.  

Following Whaley (2000), who proposed the use of the VIX as an effective fear 

indicator, Giot (2005) subsequently identified a strongly negative correlation 

between contemporaneous changes and future market index returns, along with a 

positive correlation between such future returns and current levels of the implied 

volatility indices. Both Guo and Whitelaw (2006) and Banerjee, Doran and Peterson 

(2007) went on to report similar findings; for example, Banerjee et al. (2007) 

derived the theoretical relationship between the level and innovation of the VIX and 

                                                 
1  The CBOE’s revision of the methodology of the VIX formula was based largely upon the results of 

Carr and Madan (1998) and Demeterfi et al. (1999). As regards theoretical fundamentals, Britten-Jones 

and Neuberger (2000) derived model-free implied volatility under the diffusion assumption, with Jiang 

and Tian (2005) subsequently extending this to the jump diffusion assumption. 
2  When it was first introduced in 1993, the VIX was originally compiled from the implied volatility of 

eight S&P 100 index options, comprising of near at-the-money, nearby and second nearby calls and puts; 

however, ever since 2003, the VIX has been calculated from the prices of S&P 500 index options using a 

model-free formula with almost all of the available contracts; that is, with a wide range of strike prices. 
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future returns by adopting the stochastic volatility (SV) model of Heston (1993), 

with their results providing empirical support for the predictive ability of the 

VIX-related variables on future portfolio returns. 

Since the current version of the VIX is compiled for each maturity period with 

the incorporation of almost all of the available contracts, it should prove to be more 

informative than the old version when used to investigate its predictive ability on 

future equity returns; however, the VIX remains dependent upon maturity periods, 

with the 30-day version being the most frequently used. This therefore gives rise to the 

interesting and important question of whether any useful information is contained in 

the VIX term structure for potential use in the forecasting of returns.3  

Furthermore, since it is well known that volatility has some special stylized 

facts, such as clustering and mean-reversion, the relative positions of the VIX levels 

for different maturity periods may imply the expectations of market participants on 

market volatility, and thus, on changes in the S&P 500 index due to the mean- 

variance relationship in the conventional theory of the ‘capital asset pricing model’ 

(CAPM). Therefore, our aim in the present study is to contribute to the extant related 

literature by comprehensively investigating whether the VIX term structure contains 

any useful information on future returns in the S&P 500 index. 

                                                 
3  See for example, Egloff, Leippold and Wu (2010), Bakshi, Panayotov and Skoulakis (2011), Duan 

and Yeh (2011), Johnson (2012), Luo and Zhang (2012b), Feunou, Fontaine, Taamouti, and Tedongap 

(2014). 
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Based upon the SV model framework of Heston (1993), we refine the 

theoretical work of Banerjee et al. (2007) by going on to derive a theoretical model 

which reveals positive relationships between expected excess returns in the S&P 500 

index and both the squared VIX levels and the difference between forward and 

current squared VIX levels. Since the forward squared VIX level can be computed 

from two squared VIX values with different horizons, it can therefore be regarded as 

a proxy for the VIX term structure. Hence, this model provides theoretical 

fundamentals for the potential of the VIX term structure with regard to the 

prediction of excess returns in the S&P 500 index. 

We propose three alternative empirical methods for compiling the variables 

representing the information in both the squared VIX level and its term structure in 

order to investigate whether the information content of the term structure provides an 

additional contribution to the forecasting of future excess returns in the S&P 500 index.  

Firstly, adhering closely to the theoretical model, we use the 30-day squared 

current VIX level and the difference between the 30-day forward squared VIX and 

the 30-day squared current VIX level as the respective level and term structure 

variables. Secondly, we run a ‘principal component analysis’ (PCA) of the squared 

VIX levels under various time horizons to generate the first and second components 

for our investigation; the first and second components respectively represent the 
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level and slope of the VIX term structure. As for our third approach, we employ the 

two-factor SV model proposed by Egloff et al. (2010) as the means of transforming 

the maturity-dependent squared VIX values into maturity-independent instantaneous 

variance and stochastic central tendency, and then use the former along with the 

difference between the latter and the former to serve as the respective proxies for the 

squared VIX level and term structure.  

Our findings reveal that the information content of the term structure plays an 

important role in the prediction of excess returns, regardless of which approach is 

used for the compilation of the variables; furthermore, this predictive power is also 

discernible for the excess returns under various horizons. When comparing the 

incremental contribution provided by the level and term structure variables with 

regard to the effective prediction of returns, we find that the information content of 

the squared VIX term structure is significant, and indeed, a strong complement to 

that of the squared VIX level. In particular, as a result of the mean-reversion 

behavior of volatility, the term structure variable is found to be more informative 

over shorter-term prediction horizons. Our empirical results are also found to be 

insensitive to the use of either overlapping or non-overlapping data. 

Attempts have been made in recent studies to estimate specific price dynamics by 
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incorporating the VIX term structure under a two-factor volatility framework;4 

however, the information content of the VIX term structure on future excess returns in 

the S&P 500 index has yet to attract any significant attention. Cochrane and Piazzesi 

(2005) provided an effective approach for extracting the information content of the 

interest rate term structure for the prediction of excess bond returns, with Bakshi, 

Panayotov and Skoulakis (2011) and Luo and Zhang (2012b) subsequently applying 

the approach to their empirical investigations of the relationship between forward 

variances and future excess returns; however, neither study offered any theoretical 

fundamentals for the prediction of these relationships.  

Furthermore, although Johnson (2012) and Feunou et al. (2014) derived a 

state-dependent relationship between S&P 500 excess returns and the VIX for 

different maturity periods, the direction of the impact remained somewhat ambiguous. 

Our study therefore contributes to the literature by not only proposing a theoretical 

model but also providing empirical evidence in support of the important role of the 

information in the VIX term structure on the prediction of future excess returns in the 

S&P 500 index.  

The remainder of this paper is organized as follows. The theoretical 

fundamentals adopted for our study are provided in Section 2, followed in Section 3 

                                                 
4  Examples include Egloff et al. (2010), Duan and Yeh (2011) and Luo and Zhang (2012a). 
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by a description of the data and empirical methodologies used for our empirical 

analyses. The empirical results and robustness tests are subsequently presented in 

Section 4. Finally, the conclusions drawn from this study are presented in Section 5. 

2.  THEORETICAL FUNDAMENTALS 

Giot (2005) provided support for the predictive power of current implied volatility 

on the returns of the underlying asset, whilst Banerjee et al. (2007) demonstrated 

that the changes in implied volatility from the previous period were also associated 

with the future returns of the underlying asset. Subsequently, Bakshi et al. (2011) 

empirically showed that forward variance could predict excess returns in the S&P 

500 index. Moreover, Feunou et al. (2014) show that the term structure of 

option-implied variance can reveal two predictors of the equity premium. 

In the present study, we propose a model for examining the relationship 

between future excess returns and the term structure of implied volatility by 

referring to the Banerjee et al. (2007) model. Following the stochastic volatility (SV) 

setting outlined in Heston (1993), we specify the dynamics of the asset prices, St , 

and the variance in the asset prices, Vt , under the real-world P measure as: 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + √𝑉𝑡𝑆𝑡𝑑𝑊𝑡
𝑃,                    (1) 

𝑑𝑉𝑡 = 𝜅(𝜃 − 𝑉𝑡)𝑑𝑡 + 𝜆𝑉𝑉𝑡 + 𝜎𝑉√𝑉𝑡𝑑𝑍𝑡
𝑃,              (2) 

and cov (dWt
P
, dZt

P ) = dt, where μ = rf + λVt is the expected return; rf is the risk-free rate; 
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ĸ is the volatility mean-reversion speed; θ is the long-run variance level; σV is the 

volatility of the volatility;  is the correlation between the price and variance 

innovations; and Wt
P
 and Zt

P
, and λ and λv are the respective market prices of the price 

and variance risks. Using the Girsanov theorem to transform the real-world processes 

into their risk-neutral Q-measure equivalents, we have the following Q-measure 

dynamics: 

𝑑𝑆𝑡 = 𝑟𝑓𝑆𝑡𝑑𝑡 + √𝑉𝑡𝑆𝑡𝑑𝑊𝑡
𝑄

,                      (3) 

𝑑𝑉𝑡 = 𝜅(𝜃 − 𝑉𝑡)𝑑𝑡 + 𝜎𝑉√𝑉𝑡𝑑𝑍𝑡
𝑄

,                    (4) 

and cov (dWt
Q
, dZt

Q ) = dt, where Wt
Q
 and Zt

Q are the respective Q-measure price and 

variance innovations. 

By discretizing the P-measure dynamics in Equations (1) and (2) and then 

replacing Vt with the realized variance, 𝜎𝑅𝑉,𝑡
2 , due to the P-measure, we obtain: 

𝑆𝑡+1 − 𝑆𝑡 = (𝑟𝑓 + 𝜆𝜎𝑅𝑉,𝑡
2 )𝑆𝑡 + 𝜎𝑅𝑉,𝑡𝑆𝑡𝜖𝑡               (5) 

and 𝜎𝑅𝑉,𝑡+1
2 − 𝜎𝑅𝑉,𝑡

2 = 𝜅(𝜃 − 𝜎𝑅𝑉,𝑡
2 ) + 𝜆𝑉𝜎𝑅𝑉,𝑡

2 + 𝜎𝑉𝜎𝑅𝑉,𝑡(𝜌𝜖𝑡 + √1 − 𝜌2 𝜖𝑡
𝑉),  (6) 

where εt and εt
V are the discrete-version price variance innovations under the P-measure 

and εt and εt
V are uncorrelated (i.e. 𝐶𝑜𝑣(𝜖𝑡, 𝜖𝑡

𝑉) = 0).  

Similarly, by discretizing the Q-measure volatility dynamic in Equation (4), or 

applying the Girsanov theorem to Equation (6), and then replacing Vt with the 

implied variance, 𝜎𝐼𝑉,𝑡
2 , due to the Q-measure, we obtain: 
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𝜎𝐼𝑉,𝑡+1
2 − 𝜎𝐼𝑉,𝑡

2 = 𝜅(𝜃 − 𝜎𝐼𝑉,𝑡
2 ) + 𝜎𝑉𝜎𝐼𝑉,𝑡(𝜌𝜖𝑡

∗ + √1 − 𝜌2 𝜖𝑡
𝑉∗),      (7) 

where εt
V * and εt

V * the discrete-version price variance innovations under the Q-measure 

and they are uncorrelated (i.e. 𝐶𝑜𝑣(𝜖𝑡
∗, 𝜖𝑡

𝑉∗) = 0). 

In order to connect the price risk with the variance risk, we assume that: 

𝜆 = −𝛿𝜆𝑉,                           (8) 

where δ is restricted to be positive.  

Whilst the price risk premiums, λ , are widely known to be positive, in some of 

the related studies, such as Carr and Wu (2009), the variance risk premiums, λV , 

have been found to be strongly negative; our finding of a proportional relationship 

between the two risk premiums would therefore appear to be consistent with the 

findings in the extant literature.5   

By applying Equation (8) to Equation (6), and then taking the difference with 

Equation (7), we obtain: 

𝜆𝜎𝑅𝑉,𝑡
2 = 𝛿(𝛥𝜎𝐼𝑉,𝑡

2 − 𝛥𝜎𝑅𝑉,𝑡
2 ) + 𝜅𝛿(𝜎𝐼𝑉,𝑡

2 − 𝜎𝑅𝑉,𝑡
2 ) + 𝛿𝑔1(𝜖𝑡, 𝜖𝑡

𝑉, 𝜖𝑡
∗, 𝜖𝑡

𝑉∗)   (9) 

where 𝑔1(𝜖𝑡, 𝜖𝑡
𝑉 , 𝜖𝑡

∗, 𝜖𝑡
𝑉∗) = 𝜎 (𝜎𝑅𝑉,𝑡(𝜌𝜖𝑡 + √1 − 𝜌2𝜖𝑡

𝑉) − 𝜎𝐼𝑉,𝑡(𝜌𝜖𝑡
∗ + √1 − 𝜌2𝜖𝑡

𝑉∗)) 

and 𝛥𝜎𝑡
2 = 𝜎𝑡+1

2 − 𝜎𝑡
2.  

Equations (5) and (9) then jointly result in the following relationship between 

future excess returns and realized and implied volatility levels: 

                                                 
5  Our assumption on the relationship between the price and volatility risks differs from that of 

Banerjee et al. (2007), in which λ = λv + δ, where δ is restricted to be greater than the absolute value of 

the variance risk premium. Our assumption is more general, and since it imposes less restriction on the 

δ parameter, it always results in positive price and negative variance risk premiums.  
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𝑟𝑡+1 − 𝑟𝑓 = 𝛿(𝛥𝜎𝐼𝑉,𝑡
2 − 𝛥𝜎𝑅𝑉,𝑡

2 ) + 𝜅𝛿(𝜎𝐼𝑉,𝑡
2 − 𝜎𝑅𝑉,𝑡

2 ) + 𝑔2(𝜖𝑡, 𝜖𝑡
𝑉, 𝜖𝑡

∗, 𝜖𝑡
𝑉∗),  (10) 

where   𝑟𝑡+1 =
𝑆𝑡+1−𝑆𝑡

𝑆𝑡
 and 𝑔2(𝜖𝑡, 𝜖𝑡

𝑉, 𝜖𝑡
∗, 𝜖𝑡

𝑉∗) = 𝜎𝑅𝑉,𝑡𝑆𝑡𝜖𝑡 − 𝑔1(𝜖𝑡, 𝜖𝑡
𝑉, 𝜖𝑡

∗, 𝜖𝑡
𝑉∗). 

Since it is already well documented that the implied volatility computed from 

option prices is an efficient, albeit upwardly-biased, forecast of realized volatility6 

and highly self-correlated, we assume that: 

𝜎𝑅𝑉,𝑡
2 = 𝛼 + 𝛹𝜎𝐼𝑉,𝑡

2 ,                     (11) 

where Ψ should be less than 1, due to the upwardly-biased prediction.  

 By applying Equation (11) to Equation (10), we obtain the relationship between 

future excess returns and implied volatility levels across time points, as follows:  

𝑟𝑡+1 − 𝑟𝑓 = 𝛿(1 − 𝛹)𝛥𝜎𝐼𝑉,𝑡
2 + 𝜅𝛿(1 − 𝛹)𝜎𝐼𝑉,𝑡

2 + 𝑔3(𝜖𝑡, 𝜖𝑡
𝑉, 𝜖𝑡

∗, 𝜖𝑡
𝑉∗),    (12) 

where 𝑔3(𝜖𝑡, 𝜖𝑡
𝑉, 𝜖𝑡

∗, 𝜖𝑡
𝑉∗) = 𝑔2(𝜖𝑡, 𝜖𝑡

𝑉, 𝜖𝑡
∗, 𝜖𝑡

𝑉∗) − 𝛼𝜅𝛿.   

Taking the conditional expectation for Equation (12), we derive the relationship 

between the expected future excess returns and the expected future and current 

implied volatility levels as: 

𝐸𝑡(𝑟𝑡+1 − 𝑟𝑓) = 𝐴1(𝐸𝑡(𝜎𝐼𝑉,𝑡+1
2 ) − 𝜎𝐼𝑉,𝑡

2 ) + 𝐴2𝜎𝐼𝑉,𝑡
2 + 𝐾,        (13) 

where  A1 = δ (1 – Ψ), A2 = κδ(1 – Ψ), and 𝐾 = 𝐸𝑡(𝑔3(𝜖𝑡, 𝜖𝑡
𝑉, 𝜖𝑡

∗, 𝜖𝑡
𝑉∗)).  

Since both δ and κ are positive, and Ψ is less than 1, then both A1 and A2 are 

also positive. 

Equation (13) provides a theoretical fundamental for the potential predictive 

                                                 
6  See, for example, Christensen and Prabhala (1998), Fleming (1998), Blair, Poon and Taylor 

(2001), and Jiang and Tian (2005).  
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ability on excess returns arising not only from the current implied volatility level, 

but also from its term structure which contains the expectation on future implied 

volatility. The positive sign on A2 indicates a positive association between expected 

excess returns and risk-neutral expected variance, which is consistent with the 

positive return-risk relationship stated in the conventional asset pricing models. The 

positive sign of A1 indicates a positive linkage between expected excess returns and 

the expectation on changes in expected variance, which implies that the expectation 

of an upward change in implied variance may drive future excess returns in the same 

direction. 

3.  DATA AND METHODOLOGY 

3.1 Data 

The daily S&P 500 index levels and the prices of the options written on the index are 

obtained from OptionMetrics, with our sample period (2 January 1998 to 31 August 

2012) providing a rather ‘rich’ data period since it includes both bull and bear regimes. 

The VIX levels for all of the available time horizons are calculated based upon the 

prices of S&P 500 index options and their corresponding time to maturity. The bond 

data for analysis in this study were obtained from the Federal Reserve Bank of St. 

Louis7, whilst the high-frequency index levels were obtained from OlsenData.  

                                                 
7 See the website (http://research.stlouisfed.org/) for more details. 
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3.2 Methodology 

We construct the squared VIX for several standardized horizons, comprising of 30, 

60, 90, 180, 270 and 360 calendar days, following the method and the interpolation 

process adopted by the CBOE8. The squared VIX value serves as the measure for the 

risk-neutral expected variance. As shown in Table 1, the excess returns of the S&P 

500 index are found to be more correlated with DVIXt
2
, 30 than VIXt

2
, 30, which may be 

a signal of the potential predictive ability of the VIX term structure with regard to 

returns. The highly negative correlation (–0.62) between DVIXt
2
, 30 and VIXt

2
, 30 arises 

as a result of the mean reversion property of volatility.  

<Table 1 is inserted about here> 

The correlation matrix of the squared VIX values across various maturity 

periods is presented in Table 2. Since it is clear that all of the values are highly 

correlated, it is inappropriate to include them simultaneously within a regression 

model, which lends additional support to the appropriateness of our approach of 

extracting the term structure information from the slope or through PCA.9 

<Table 2 is inserted about here> 

As suggested in many of the prior studies, several option-implied variables 

(such as the variance risk premium, model-free skewness and kurtosis) and 

                                                 
8 See the VIX white paper (http://www.cboe.com/micro/vix/vixwhite.pdf) for more details. 
9 Johnson (2012) and Feunou et al. (2014) also used PCA to extract the information content of the 

VIX term structure. 
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macroeconomic variables (such as the interest rate term spread and default spread) 

are also informative with regard to future stock returns;10 thus, we follow Bollerslev 

et al. (2009) to select three factors as the control variables in our regression analysis, 

these are: (i) the variance risk premium (VRP), which is defined as the difference 

between the VIX level and the realized variance compiled from the high-frequency 

five-minute transaction prices;11 (ii) the default spread (DFS), which is defined as 

the difference between Moody’s BAA and AAA bond yield indices; and (iii) the 

term spread (TMS), which is defined as the difference between the ten-year and 

three-year Treasury yields.  

Additional controls are also provided in this study for the influence of model- 

free skewness (SKEW) and kurtosis (KURT), which are calculated based upon the 

method proposed by Bakshi, Kapadia and Madan (2003). Since our empirical 

analysis focuses on the S&P 500 index, we construct the VIX by the methodology of 

CBOE as the implied volatility index.12  

In the following sub-sections, we propose three alternative approaches to the 

                                                 
10  Examples include Ang and Bekaert (2007), Bollerslev, Tauchen and Zhou (2009), Vilkov and 

Xiao (2013), Conrad, Dittmar and Ghysel (2013), Chang, Christoffersen and Jacobs (2013) and 

Kozhan, Neuberger and Schneider (2013) 
11  We follow Bollerslev et al. (2009) to use intra-day data to construct the realized monthly variance. 

As discussed in the prior studies, including Andersen, Bollerslev, Diebold and Labys (2001) and 

Hansen and Lunde (2006), the selection of the sampling frequency is the trade-off between data 

continuity and market microstructure noises. Five minutes is the most frequently adopted frequency 

for the calculation of stock realized volatility. 
12 Details on the computation of the VIX and the construction of the VIX term structure are provided 

in Appendix A. 
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incorporation of the information implied in the VIX term structure for the prediction 

of future excess returns. 

3.2.1  Forward implied variance 

Our first approach adheres closely to our theoretical model. 𝐸𝑡(𝜎𝐼𝑉,𝑡+1
2 ) , by 

definition, refers to the expectation at time t of the implied variance at time t+1 

which gauges the level of volatility during the period from time t+1 to t+2. 

Conceptually, this is the forward variance for the period from time t+1 to t+2; 

therefore, the forward implied variance, 2VIXt
2
, 2 – VIXt

2
, 1, which is computed from the 

squared VIX term structure, is used to replace 𝐸𝑡(𝜎𝐼𝑉,𝑡+1
2 ).  

 Given that one month (30 calendar days) is commonly used as the time horizon 

in the VIX index, we also set the time unit as one month (30 days) in the present 

study and then rewrite Equation (13) as:  

𝐸𝑡(𝑟𝑡+30 − 𝑟𝑓) = 𝐴1
′ ∗ 𝐷𝑉𝐼𝑋𝑡,30

2 + 𝐴2 ∗ 𝑉𝐼𝑋𝑡,30
2 + 𝐾,        (14) 

where  

  DVIXt
2
, 30 = FVIXt

2
, (30,60) – VIXt

2
, 30 = 2VIXt

2
, 60 –VIXt

2
, 30 – VIXt

2
, 30 = 2(VIXt

2
, 60 –VIXt

2
, 30). 

We run the following regression in order to examine whether the information 

implied in the VIX term structure can predict excess returns: 

𝐸𝑅𝑡,𝑡+ℎ = 𝛼 + 𝛽1𝑉𝐼𝑋𝑡,30
2 + 𝛽2𝐷𝑉𝐼𝑋𝑡,30

2 + 𝜖𝑡,           (15)  

where ERt,t+h refers to the excess return for the period from time t to t+h, which is 
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defined as the return on the S&P 500 index minus the three-month T-bill rate. 

According to our theoretical model, β1 and β2, which respectively represent the 

predictive contribution of the implied variance level and the term structure with 

regard to excess returns, are both expected to be positive. 

3.2.2  The first and second principal components 

In the bond markets, Cochrane and Piazzesi (2005) indicate that amongst the first 

three components generated from ‘principal component analysis’ (PCA), which are 

identified as the level, slope and curvature of the interest rate term structure, the 

term structure of the interest rates is found to provide abundant information on 

excess bond returns. Furthermore, Feunou et al. (2014) apply the PCA to extract the 

systematic factors across the term structure of option-implied variance and 

empirically suggest that the first two components are sufficient to explain the 

changes on future S&P 500 index returns. 

Since DVIXt
2
, 30 = 2(VIXt

2
, 60 – VIXt

2
, 30) is a conceptual measure of the slope of the 

implied variance term structure for the period from 30 to 60 days, it would seem 

natural to question whether the slope of the implied variance term structure also 

contains useful information on the future excess returns of the underlying asset.  

Following the approaches adopted in several studies within the extant literature, 

we apply PCA to the squared VIX across all of the available maturity periods and 
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take the first and second principal components, PC1 and PC2, as the information 

proxy of the implied variance term structure. These two components essentially 

represent the level and slope of the implied variance term structure, which are the 

respective conceptual equivalents of VIXt
2
, 30 and DVIXt

2
, 30;

13 hence, the regression 

model is amended to: 

𝐸𝑅𝑡,𝑡+ℎ = 𝛼 + 𝛽1𝑃𝐶1𝑡 + 𝛽2𝑃𝐶2𝑡 + 𝜖𝑡.             (16) 

3.2.3  Two-factor stochastic volatility framework proxies 

Egloff et al. (2010) extended the (SV) model of Heston (1993) to allow the central 

tendency of the variance to be another stochastic process; thus, they revised the 

decomposition of the squared VIX to: 

𝑉𝐼𝑋𝑡,𝜏
2 = 𝜔1𝑉𝑡 + 𝜔2𝑚𝑡 + (1 − 𝜔1 − 𝜔2)𝜃𝑚            (17) 

where   𝜔1 =
1−𝑒−𝜅𝑣𝜏

𝜅𝑣𝜏
, 𝜔2 =

1+
𝜅𝑚

𝜅𝑣−𝜅𝑚
𝑒−𝜅𝑣𝜏−

𝜅𝑣
𝜅𝑣−𝜅𝑚

𝑒−𝜅𝑚𝜏

𝜅𝑚𝜏
.  

Consequently, the squared VIX indices for various maturity periods can be 

transformed to the maturity-independent instantaneous variance, Vt , the stochastic 

central tendency, mt , and the long-run mean, θm.14 

It is quite a straightforward matter for researchers to adopt instantaneous 

variance as the proxy for the level of the VIX term structure, and given the 

                                                 
13 From our analysis in the present study, PC1 and PC2 are found to be capable of explaining almost 

95% of the variation in the VIX term structure. 
14 Luo and Zhang (2012a) also proposed a similar decomposition of the squared VIX under a 

framework with an independent stochastic long-run mean variance. 
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mean-reversion property of volatility, the relative relationship between the 

instantaneous variance and the stochastic central tendency, mt  – Vt , may well reveal 

the direction in which the VIX level is likely to move, which is the analogue of the 

slope of the VIX term structure.  

We use the efficient iterative two-step procedure, suggested by Christoffersen, 

Heston and Jacob (2009), to estimate the parameters and to generate the time series 

of Vt  and mt. The two-stage procedure is implemented as follows: 

Step 1:  We solve the following optimization in order to estimate the time 

series of (�̂�t, �̂�𝑡), t = 1,2,…, T. 

(�̂�𝑡, �̂�𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ (𝑉𝐼𝑋𝑡,𝜏𝑗

𝑀𝑘𝑡2
 − 𝑉𝐼𝑋𝑡,𝜏𝑗

2 )
2

, 𝑡 = 1,2, ⋯ , 𝑇
𝑛𝑡
𝑗=1 ,    (18) 

where 𝑉𝐼𝑋𝑡,𝜏𝑗

𝑀𝑘𝑡 and VIXt,τj respectively denote the market and theoretical VIX 

levels for the maturity τj at time t. 

Step 2:  We collect the (Vt, mt) time series in order to estimate the (𝜃𝑚, �̂�𝜏, �̂�𝑚) 

parameter by implementing the following minimization: 

(𝜃𝑚, �̂�𝜏, �̂�𝑚) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ∑ (𝑉𝐼𝑋𝑡,𝜏𝑗

𝑀𝑘𝑡2
− 𝑉𝐼𝑋𝑡,𝜏𝑗

2 )
2

𝑛𝑡
𝑗=1

𝑇
𝑡=1 .        (19) 

The iteration procedure between Steps 1 and 2 is then carried out until the 

convergence criterion in the objective function of Step 2 is reached; the prediction 

regression is therefore revised to:                          
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𝐸𝑅𝑡,𝑡+ℎ = 𝛼 + 𝛽1𝑉𝑡 + 𝛽2(𝑚𝑡 − 𝑉𝑡) + 𝜖𝑡.               (20) 

4.  EMPIRICAL RESULTS  

Our empirical analysis begins with an investigation into the information content of 

the VIX term structure for the subsequent-period excess returns, with the variables 

being compiled from the three different approaches described in the previous section. 

If predictive power is discernible, we then go on to explore how long such power 

may persist. We subsequently determine whether any profitable trading strategy can 

be formed based upon the predictive power of the VIX term structure. Finally, we 

carry out tests to verify the robustness of the results. 

4.1 Forward Implied Variance Predictions  

The DVIXt
2
, 30 variable is compiled from the forward variance implied in the VIX 

term structure, and given that this variable is perfectly in line with our theoretical 

model, we first run the regression model specified in Equation (15). Based upon the 

control variables detailed at the end of Sub-section 3.2 (Methodology), the regression 

model is re-specified as: 

𝐸𝑅𝑡,𝑡+30 = 𝛼 + 𝛽1𝑉𝐼𝑋𝑡,30
2 + 𝛽2𝐷𝑉𝐼𝑋𝑡,30

2                 
(21)

 

+𝛽3𝑉𝑅𝑃𝑡 + 𝛽4𝑆𝐾𝐸𝑊𝑡 + 𝛽5𝐾𝑈𝑅𝑇𝑡 + 𝛽6𝑇𝑀𝑆𝑡 + 𝛽7𝐷𝐹𝑆𝑡 + 𝜖𝑡. 

The results on the full model and the various restricted models are reported in 

Table 3. As shown in Models (1) and (2), when VIXt
2
, 30 and DVIXt

2
, 30 are individually 
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examined, both β1 and β2 are found to be insignificant, albeit positive; however, 

when the two variables are included in Model (3), β2 becomes significantly positive 

at the 10% level, whilst β1 remains insignificant.  

When VIXt
2
, 30 and DVIXt

2
, 30 are respectively run with the control variables in 

Models (4) and (5), DVIXt
2
, 30 is found to be more informative than VIXt

2
, 30 on future 

excess returns. Finally, as shown in the full model, Model (6), both variables are 

found to be significantly positive at the 5% level.  

<Table 3 is inserted about here> 

Overall, the information implied in the squared VIX term structure is found to 

play an important role in the prediction of excess returns in the S&P 500 index, 

although the squared VIX level is also found to be informative to some extent. The 

important role of DVIXt
2
, 30 also gains support from the higher incremental R2 values 

that are found in those models in which DVIXt
2
, 30 is included.  

In summary, the positive signs of β1 and β2 are consistent with our theoretical 

predictions, although they are not always found to be significant. When comparing 

the relative contributions of VIXt
2
, 30 and DVIXt

2
, 30 to the prediction of future excess 

returns, we find that the latter is more informative than the former and that neither 

can completely replace the other. Therefore, in addition to the squared VIX level, the 

squared VIX term structure is also found to contain significant information of 
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relevance to the prediction of excess returns in the S&P 500 index. 

4.2 First and Second Principal Component Predictions 

Given that the first and second principal components of the squared VIX term 

structure, PC1 and PC2, represent its level and slope, we use the PCA approach for 

the squared VIX values, under various time horizons, as the means of generating 

PC1 and PC2, and then run the model specified in Equation (16). The regression 

model with control variables included is re-specified as: 

𝐸𝑅𝑡,𝑡+30 = 𝛼 + 𝛽1𝑃𝐶1𝑡 + 𝛽2𝑃𝐶2𝑡               
(22)

 

+𝛽3𝑉𝑅𝑃𝑡 + 𝛽4𝑆𝐾𝐸𝑊𝑡 + 𝛽5𝐾𝑈𝑅𝑇𝑡 + 𝛽6𝑇𝑀𝑆𝑡 + 𝛽7𝐷𝐹𝑆𝑡 + 𝜖𝑡. 

The results on the full model and the various restricted models, which are 

shown in Table 4, reveal that the first and second principal component results are 

generally in line with those obtained from forward implied variance, with both PC1 

and PC2 being found to be positively related to future excess returns, which is 

consistent with our predictions. When examining those models without the control 

variables, Models (1)-(3), PC2 appears to be more informative than PC1, since β2 is 

found to have greater significance than β1; however, when the control variables are 

included, β1 in Model (4) is found to be significantly positive at the 1% level, and β2 

in Model (5) is found to be significantly positive at the 5% level, although β2 

becomes insignificant in Model (6), the full model.  
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<Table 4 is inserted about here> 

Overall, in addition to the squared VIX level, the slope of the squared VIX term 

structure is also found to contribute to the prediction of excess returns in the S&P 

500 index although PC2 can explain only 5.5% of the variation in the squared VIX 

term structure, whilst PC1 is capable of explaining 93.11%. Our empirical findings 

provide strong support for the informativeness of the slope factor of the VIX term 

structure on future excess returns in the S&P 500 index.  

4.3 Two-factor Stochastic Volatility Framework Proxy Predictions 

Since the two-factor stochastic volatility model provides an alternative instrument 

for the transformation of the maturity-dependent VIX values to maturity-independent 

instantaneous variance and its stochastic central tendency, we generate the time 

series of (Vt, mt) and then run the regression model specified in Equation (20). The 

regression model with the control variables included is re-specified as:  

𝐸𝑅𝑡,𝑡+30 = 𝛼 + 𝛽1𝑉𝑡 + 𝛽2(𝑚𝑡 − 𝑉𝑡)                
(23)

 

+𝛽3𝑉𝑅𝑃𝑡 + 𝛽4𝑆𝐾𝐸𝑊𝑡 + 𝛽5𝐾𝑈𝑅𝑇𝑡 + 𝛽6𝑇𝑀𝑆𝑡 + 𝛽7𝐷𝐹𝑆𝑡 + 𝜖𝑡. 

The results on the full model and the various restricted models, which are 

reported in Table 5, are generally found to be consistent with those of the previous 

two alternative approaches. In particular, both β1 and β2 are found to be significantly 

positive at the 1% level in the full model. Therefore, in addition to the instantaneous 
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variance level, its position relative to the stochastic central tendency is also found to 

play a significant role in terms of predicting excess returns.  

As regards the incremental contribution to such prediction, β2 is clearly more 

informative than β1, since β2 is found to be significantly positive in most of the 

models. In summary, the findings from our third alternative approach also confirm 

the importance of the information provided by the squared VIX term structure with 

regard to the prediction of excess returns in the S&P 500 index.   

<Table 5 is inserted about here> 

4.4 Predictions across Time Horizons 

The focus so far in this study has been placed on a one-month prediction horizon in 

order to match the maturity of the options used to compute the VIX index, and since 

our alternative approaches have provided consistent findings on the important role of 

the squared VIX term structure in the prediction of excess returns, it would seem 

natural to enquire just how far forward the excess returns can be predicted. In order to 

investigate this intriguing question, we employ various horizons (2, 3, 6, 9 and 12 

months) of the excess returns as the dependent variables in the regression models, 

with the results from the three alternative approaches being reported in Table 6.  

<Table 6 is inserted about here> 

 As shown in Models (1) and (3) of Table 6, for all horizons, both β1 and β2 are 
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found to be significantly positive at the level of at least 5%, which thereby indicates 

that the squared VIX level and the term structure are not only informative for shorter 

excess return horizons, but also for longer horizons. Since this predictive power can 

be satisfactory for horizons of up to a full year, it is clearly of interest to explore the 

relative contributions of the squared VIX level and the term structure to the 

prediction of excess returns across such horizons.  

In order to facilitate an exploration of the way in which the term structure 

factor incrementally contributes to such prediction, we compare the R2 values for 

both the full model and the restricted model (where β2 = 0). The R2 values of the 

restricted model, for various prediction horizons, are shown in the penultimate row 

of each panel in Table 6, with the final row showing the percentage increase in R2 as 

a result of the inclusion of the term structure variables. Regardless of the approach 

adopted for the compilation of the variables, the percentage contribution made by 

the term structure variable is found to be most notable for the one-month prediction 

horizon, followed by a general decline over longer prediction horizons. For example, 

in Panel C, as compared to the model with Vt and the control variables, the R2 in the 

full model increases by a factor of about fourteen, from 0.0030 to 0.0410. 

When using PCA as an alternative instrument for the compilation of the 

variables, the contribution of the squared VIX term structure is not as impressive as 
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that of the squared VIX level; for example, the β2 coefficient is found to be 

significantly positive only in the six-month case. Nevertheless, the sign remains 

positive across all prediction horizons, and the conclusions drawn from the R2 values 

are consistent with those drawn from the other two alternative approaches. 

Overall, whilst both the VIX level and the VIX term structure are found to be 

equally informative with regard to future excess returns in the S&P 500 index across 

all of the horizons investigated, the VIX term structure is particularly informative for 

shorter-horizon excess returns.  

4.5 Trading Strategy Tests 

According to the regression results discussed above, we have found that the 

information derived from the squared VIX term structure, as well as the squared VIX 

level, is of use in determining future excess returns in the S&P 500 index; however, 

our regression analysis has been based upon an in-sample framework. Therefore, as a 

guide for trading strategies, we take our analysis a step further to investigate the 

out-of-the-sample performance of the level and term structure based upon predictions 

generated from regression models using historical data. In specific terms, we run the 

models with the variables representing the squared VIX level, the squared VIX term 

structure, or both factors, with all of the control variables included, to determine 

whether trading strategies using the information derived from the squared VIX term 
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structure can be more profitable than those using the squared VIX level only.  

The trading strategies include: (i) setting up a long position with a single unit 

asset when the forecast exceeds a critical value; (ii) setting up a short position with a 

single unit asset when the forecast is below the negative critical value; and (iii) 

doing nothing when the forecast is within the positive and negative critical values. 

The critical values range from 0 to 0.1 (= 10%) and the prediction horizons for the 

excess returns are set at one, two and three months. The sample period used to 

generate the forecasts covers a total of six months, with the predictions being 

implemented based upon a rolling window procedure.  

The results on the three alternative approaches used to compile the variables 

representing the information on the VIX term structure are illustrated in Figures 1-3, 

with Figure 1 illustrating the results for VIXt
2
, 30 (DVIXt

2
, 30) as the variable 

representing the squared VIX level (term structure).  

<Figure 1 is inserted about here> 

It is difficult to distinguish between the performances of the three models when 

the prediction horizon is set at one or two months; thus, as we can see from the first 

and second graphs in Figure 1 (h=30 and h=60), the model with DVIXt
2
, 30 outperforms 

the model with VIXt
2
, 30 only for the critical value between 0.02 and 0.04 (0.03) in the 

one-month (two-month) prediction.  
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However, when examining the other prediction horizons, we find that the 

model with DVIXt
2
, 30 outperforms the model with VIXt

2
, 30 for most of the critical 

values. In particular, the former outperforms the latter in almost every case in the 

three-month prediction. Interestingly, the model with both VIXt
2
, 30 and DVIXt

2
, 30 is 

unable to outperform the model with only DVIXt
2
, 30, which therefore suggests that 

the information quality of DVIXt
2
, 30 may be better than that of VIXt

2
, 30. 

 The results with PC1 (PC2) as the variable representing the squared VIX level 

(VIX term structure) are shown in Figure 2, whilst those with Vt (mt  – Vt ) as the variable 

representing the squared VIX level (term structure) are shown in Figure 3. As we 

can see from these figures, the general patterns are similar to those for VIXt
2
, 30 and 

DVIXt
2
, 30; however, in contrast to the earlier results, for the two-month prediction, 

the model with the information derived from the squared VIX term structure is 

found to be only slightly better than that with the information derived from the 

squared VIX level. As regards the one- and three-month predictions, the term 

structure is found to overwhelmingly outperform the squared VIX level, whilst for 

most of the critical values, the model which includes both the squared VIX level 

information and the VIX term structure information is also found to make higher 

profits than that with only the VIX level information.      

<Figures 2 and 3 are inserted about here> 
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In summary, regardless of which approach is adopted to extract the information 

variables, a trading strategy which follows the forecasts generated from the 

information on the squared VIX term structure clearly improves and outperforms a 

strategy which follows the forecasts generated from only the squared VIX level. 

Therefore, both the in-sample regression analysis and the out-of-the-sample trading 

strategy highlight the merits of the information implied in the squared VIX term 

structure with regard to the prediction of excess returns in the S&P 500 index, 

although the squared VIX level is also found to be informative to some extent.  

4.6 Robustness Analysis 

In order to ensure that we have a sufficiently large number of observations, we have 

run the regression models using overlapping data (i.e. daily one-month returns); 

however, despite having adopted robust Newey-West standard errors for our 

analyses, we may still wonder whether the findings would remain unchanged if we 

were to use non-overlapping data. Thus, in order to explore whether the findings are 

sensitive to data selection, we also use non-overlapping data to rerun the empirical 

analysis presented above. The results of the full models for one-, two- and three- 

month prediction horizons are reported in Table 7. 

<Table 7 is inserted about here> 

 The general finding from Table 7 is that the variable representing the information 
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on the squared VIX term structure is more informative than that representing the 

squared VIX level information. When examining the one- and three- month prediction 

horizons, we find that the coefficient on the term structure variable, β2, is always 

significantly positive, a factor which is not dependent on the approach adopted for the 

compilation of the information variables; however, the coefficient on the level variable, 

β1, is found to be positive in all case but insignificant. As regards the two-month 

prediction, only one coefficient is found to be significantly positive; that is, β2 with mt  

– Vt as the term structure variable. 

Overall, our findings based upon both overlapping and non-overlapping data are 

generally consistent. Both analyses provide support for the important role of the 

squared VIX term structure in the determination of future excess returns in the S&P 

500 index. The information content of the squared VIX term structure is clearly 

significant, and indeed, a strong complement to that of the squared VIX level. 

5.  CONCLUSIONS 

We construct a theoretical model based upon the stochastic volatility (SV) model 

proposed by Heston (1993) to associate the squared VIX level and VIX term 

structure with the excess returns of the S&P 500 index. Our findings reveal the 

existence of a positive relationship between excess returns and the squared VIX 

level, which is consistent with the traditional capital asset pricing model (CAPM). 
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Furthermore, a positive relationship is also found to exist between excess market 

returns and the squared VIX term structure, which is consistent with the empirical 

results of Bakshi et al. (2011).  

We use three alternative empirical approaches to support our theoretical model, 

from which we find that the squared VIX term structure is more informative than the 

squared VIX level, although predictive power is found to exist for both factors 

across various time horizons. The incremental contribution of the VIX term structure 

with regard to the prediction of excess returns is particularly discernible for shorter 

horizons. Finally, we find that the adoption of trading strategies based upon the 

forecasts generated from the information on the squared VIX term structure are 

clearly superior to those based upon only the squared VIX level.  
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Table 1  Correlation matrix of excess future monthly returns, VIX30 and DVIX30 
 
ERt,t+30 is the excess return for the period from time t to t+30, defined as the return on the S&P 500 

index minus the three-month T-bill rate; VIXt
2
, 30 is the squared VIX with a 30 calendar-day maturity; 

and DVIXt
2
, 30 is the difference between the squared VIX with a 60 calendar-day maturity and the 

squared VIX with a 30 calendar-day maturity, scaled by 2, that is: DVIXt
2
, 30 = 2(VIXt

2
, 60 – VIXt

2
, 30). 

 

 
 ERt,t+30  VIX t

2
, 30  DVIX t

2
, 30 

ERt,t+30 1.0000 
  

VIX t
2
, 30 0.0047 1.0000 

 
DVIX t

2
, 30 0.1132 –0.6167 1.0000 

 
 
 
 
Table 2  Correlation matrix of squared VIX values under different horizons  
 

VIXt
2
, h is the squared VIX with an h calendar-day maturity, where h = 30, 60, 90, 180, 270 and 360. 

 

  VIX t
2
, 30  VIX t

2
, 60  VIX t

2
, 90  VIX t

2
, 180  VIX t

2
, 270  VIX t

2
, 360 

VIX t
2
, 30 1.0000      

VIX t
2
, 60 0.9852 1.0000     

VIX t
2
, 90 0.9622 0.9899 1.0000    

VIX t
2
, 180 0.9031 0.9522 0.9767 1.0000   

VIX t
2
, 270 0.8519 0.9128 0.9460 0.9834 1.0000  

VIX t
2
, 360 0.7541 0.8222 0.8583 0.9108 0.9362 1.0000 
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Table 3  Forward implied variance predictions 
 

This table presents the results based upon the following regression model: 

ERt,t+30 = α + β1VIX t
2
, 30 + β2DVIX t

2
, 30 + β3VRPt

 + β4SKEWt
 + β5KURTt

 + β6TMSt
 + β7DFSt

 + εt 

where ERt,t+30, is the excess return for the period from time t to t+30, defined as the return on the S&P 500 index minus the three-month T-bill rate; VIXt
2
, 30 is the squared 

VIX with a 30 calendar-day maturity; and DVIXt
2
, 30 is the difference between the squared VIX with a 60 calendar-day maturity and the squared VIX with a 30 

calendar-day maturity, scaled by 2, that is: DVIXt
2
, 30 = 2(VIXt

2
, 60 – VIXt

2
, 30); VRPt is the variance risk premium, that is: VRPt = VIXt

2
, 30 – 𝑅𝑉𝑡,30, where 𝑅𝑉𝑡,30 is the realized 

variance for the period from t–30 to t; SKEWt (KURTt) is the model-free skewness (kurtosis) with a 30 calendar-day maturity (Bakshi et al., 2003); TMSt is the term 

spread defined as the difference between the ten-year and three-month Treasury yields; and DFSt is the term spread defined as the difference between Moody’s BAA 

and AAA bond yield indices (Bollerslev et al., 2009). The standard errors (S.E.) are calculated based upon the Newey-West method, with the lag being equal to the 

number of overlapping horizons. The sample period runs from 2 January 1998 to 31 August 2012.  

 

One-month     

Horizon 

Models 

(1)   (2)  (3)  (4)  (5)  (6) 

 Coeff. S.E.  Coeff. S.E.  Coeff. S.E.  Coeff. S.E.  Coeff. S.E.  Coeff. S.E. 

α  0.0020 0.0042 0.0017 0.0033 –0.0050 0.0055 0.0003 0.0120 0.0023 0.0121 0.0039 0.0126 

β1 0.0047 0.0881 – – 0.1190 0.0984 0.1532 0.1136 – – 0.3598** 0.1556 

β2 – – 0.2880 0.1850 0.4760* 0.2510 – – 0.3820* 0.2110 0.6216** 0.2678 

β3 – – – – – – 0.0068 0.0047 –0.0042 0.0045 0.0055 0.0051 

β4 – – – – – –  –0.0015 0.0023 –0.0011 0.0021 –0.0005 0.0021 

β5 – – – – – – -0.0003 0.0004 –0.0002 0.0004  -0.0001 0.0004 

β6 – – – – – –  –0.0009 0.0023 –0.0009 0.0023 –0.0011 0.0024 

β7 – – – – – – –0.0028 0.0136 –0.0046 0.0140 –0.0160 0.0149 

No. of Obs. 3,644 3,664 3,664 3,644 3,644 3,644 

R
2
 0.0001 0.0132 0.0220 0.0072 0.0171 0.0361 
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Table 4  First and second principal component predictions 
 

This table presents the results based upon the following regression model: 

ERt,t+30 = α + β1PC1t + β2PC2t + β3VRPt
 + β4SKEWt

 + β5KURTt
 + β6TMSt

 + β7DFSt
 + εt 

where ERt,t+30, is the excess return for the period from time t to t+30, defined as the return on the S&P 500 index minus the three-month T-bill rate; PC1t and PC2t are 

the first and second principal components; VRPt,30 is the variance risk premium, that is: VRPt = VIXt
2
, 30 – RVt,30, where RVt,30 is the realized variance for the period from t–

30 to t; SKEWt (KURTt) is the model-free skewness (kurtosis) with a 30 calendar-day maturity (Bakshi et al., 2003); TMSt is the term spread defined as the difference 

between the ten-year and three-month Treasury yields; and DFSt is the term spread defined as the difference between Moody’s BAA and AAA bond yield indices 

(Bollerslev et al., 2009). The standard errors (S.E.) are calculated based upon the Newey-West method, with the lag being equal to the number of overlapping horizons. 

The sample period runs from 2 January 1998 to 31 August 2012.  

 

One-month     

Horizon 

Models 

(1)   (2)  (3)  (4)  (5)  (6) 

 Coeff. S.E.  Coeff. S.E.  Coeff. S.E.  Coeff. S.E.  Coeff. S.E.  Coeff. S.E. 

α  0.0022 0.0033 0.0023 0.0032 0.0023 0.0032 0.0254* 0.0141 0.0089 0.0122 0.0263* 0.0143 

β1 0.0012 0.0018 – – 0.0012 0.0017 0.0075*** 0.0028 – – 0.0061** 0.0027 

β2 – – 0.0108* 0.0060 0.0108* 0.0063 – – 0.0149** 0.0062 0.0097 0.0060 

β3 – – – – – – 0.0102* 0.0056 –0.0040 0.0039 0.0051 0.0050 

β4 – – – – – –  –0.0008 0.0022 –0.0011 0.0022 –0.0006 0.0022 

β5 – – – – – – -0.0001 0.0004 –0.0002 0.0004 –0.0001 0.0004 

β6 – – – – – –  –0.0013 0.0025 –0.0014 0.0024 –0.0016 0.0025 

β7 – – – – – – –0.0141 0.0142 –0.0088 0.0136 –0.0175 0.0145 

No. of Obs. 3,644 3,664 3,664 3,644 3,644 3,644 

R
2
 0.0031 0.0132 0.0167 0.0283 0.0201 0.0342 

 

  



 37 

Table 5  Two-factor stochastic volatility framework proxy predictions 
 

This table presents the results based upon the following regression model: 

ERt,t+30 = α + β1Vt + β2(mt
 – Vt) + β3VRPt

 + β4SKEWt
 + β5KURTt

 + β6TMSt
 + β7DFSt

 + εt 

where ERt,t+30, is the excess return for the period from time t to t+30, defined as the return on the S&P 500 index minus the three-month T-bill rate; θt and mt are the 

respective instantaneous variance and stochastic central tendency; VRPt,30 is the variance risk premium, that is: VRPt = VIXt
2
, 30 – RVt,30, where RVt,30 is the realized 

variance for the period from t–30 to t; SKEWt (KURTt) is the model-free skewness (kurtosis) with a 30 calendar-day maturity (Bakshi et al., 2003); TMSt is the term 

spread defined as the difference between the ten-year and three-month Treasury yields; and DFSt is the term spread defined as the difference between Moody’s BAA 

and AAA bond yield indices (Bollerslev et al., 2009). The standard errors (S.E.) are calculated based upon the Newey-West method, with the lag being equal to the 

number of overlapping horizons. The sample period runs from 2 January 1998 to 31 August 2012. 
 

One-month     

Horizon 

Models 

(1)   (2)  (3)  (4)  (5)  (6) 

 Coeff. S.E.  Coeff. S.E.  Coeff. S.E.  Coeff. S.E.  Coeff. S.E.  Coeff. S.E. 

α  0.0030 0.0037 0.0016 0.0034 –0.0086 0.0066 0.0002 0.0119 0.0010 0.0116 0.0024 0.0122 

β1 –0.0141 0.0760 – – 0.1780 0.1140 0.0314 0.1090 – – 0.4190*** 0.1620 

β2 – – 0.0981 0.0791 0.2730** 0.1330 – – 0.1800* 0.0970 0.4270*** 0.1480 

β3 – – – – – – 0.0027 0.0049 –0.0062 0.0049 0.0026 0.0050 

β4 – – – – – –  –0.0016 0.0023 –0.0010 0.0021 –0.0001 0.0021 

β5 – – – – – – -0.0002 0.0004 –0.0002 0.0004  -0.0005 0.0004 

β6 – – – – – –  –0.0008 0.0023 –0.0011 0.0023 –0.0016 0.00250 

β7 – – – – – – –0.0001 0.0133 –0.0044 0.0132 –0.0184 0.0144 

No. of Obs. 3,644 3,664 3,664 3,644 3,644 3,644 

R
2
 0.0001 0.0108 0.0241 0.0036 0.0166 0.0411 
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Table 6  Time horizon predictions 
 

This table presents the results based upon the following regression models: 

ERt,t+h = α + β1VIX t
2
, 30 + β2DVIX t

2
, 30 + β3VRPt

 + β4SKEWt
 + β5KURTt

 + β6TMSt
 + β7DFSt

 + εt             Model (1) 

ERt,t+h = α + β1PC1t + β2PC2t + β3VRPt
 + β4SKEWt

 + β5KURTt
 + β6TMSt

 + β7DFSt
 + εt                      Model (2) 

ERt,t+ h = α + β1Vt + β2(mt
 – Vt) + β3VRPt

 + β4SKEWt
 + β5KURTt

 + β6TMSt
 + β7DFSt

 + εt              Model (3) 

where h = 30, 60, 90, 180, 270 and 360, with the sample period running from 2 January 1998 to 31 August 2012. The table presents the coefficients on only the main 

explanatory variables, VIXt
2
, 30, DVIXt

2
, 30 , PC1t , PC2t , Vt and mt – Vt, along with the standard errors (S.E.) which are calculated based upon the Newey-West method, where 

the lags are equal to the number of overlapping horizons. We present the R2 of the regression models with the two main factors and all of the control variables. The 

penultimate and final row of each panel are presented as the R2 of the regression models only with the level factor and all control variables and the ratio of the bottom third 

row to the penultimate row minus one respectively. 

 

Variables 

Horizons 

 One-month   Two-month   Three-month   Six-month  Nine-month  One-year 

 Coeff. S.E.   Coeff. S.E.   Coeff. S.E.   Coeff. S.E.   Coeff. S.E.   Coeff. S.E. 

Panel A:  Model (1) 

β1 0.3600** 0.1560 0.6590*** 0.2290 1.0510*** 0.3520 1.8280*** 0.5120 2.2700*** 0.6510 2.2900*** 0.7810 

β2 0.6220** 0.2680 0.8590** 0.3990 1.1910** 0.4740 2.2030*** 0.6370 2.5400*** 0.7050 2.3320*** 0.7800 

No. of Obs. 3,644 3,623 3,602 3,539 3,476 3,421 

R
2
 0.0365 0.0502 0.0923 0.1788 0.2171 0.2390 

R
2 with VIX t

2
, 30 & controls 0.0070 0.0221 0.0540 0.1192 0.1670 0.2074 

Increase in R
2
  4.14 1.27 0.70 0.50 0.30 0.15 
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Table 6  (Contd.) 
 

Variables 

Horizons 

 One-month   Two-month   Three-month   Six-month  Nine-month  One-year 

 Coeff. S.E.   Coeff. S.E.   Coeff. S.E.   Coeff. S.E.   Coeff. S.E.   Coeff. S.E. 

Panel B:  Model (2) 

β1 0.0061** 0.0027 0.0126*** 0.0041 0.0202*** 0.0063 0.0344*** 0.0093 0.0427*** 0.0124 0.0420*** 0.0149 

β2 0.0097 0.0060 0.0100 0.0091 0.0123 0.0109 0.0333* 0.0183 0.0324 0.0238 0.0282 0.0296 

No. of Obs. 3,644 3,623 3,602 3,539 3,476 3,421 

R
2
 0.0340 0.0581 0.1053 0.2057 0.2394 0.2532 

R
2 with PC1t,  & controls 0.0281 0.0543 0.1022 0.1941 0.2324 0.2492 

Increase in R
2
  0.21 0.07 0.03 0.06 0.03 0.02 

Panel C:  Model (3) 

β1 0.4190*** 0.1620 0.8030*** 0.2490 1.2630*** 0.3690 2.2570*** 0.5750 2.7240*** 0.7440 2.6720*** 0.9080 

β2 0.4270*** 0.1480 0.7280** 0.2310 1.0280*** 0.2990 1.8800*** 0.4650 2.1270*** 0.5860 1.9490*** 0.7190 

No. of Obs. 3,644 3,623 3,602 3,539 3,476 3,421 

R
2
 0.0410 0.0686 0.1137 0.2153 0.2436 0.2538 

R
2 with Vt,  & controls 0.0030 0.0111 0.0362 0.0961 0.1450 0.1923 

Increase in R
2
  12.67 5.18 2.14 1.24 0.68 0.32 
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Table 7  Predictions with non-overlapping data 
 
This table presents the results based upon the following regression models: 

ERt,t+h = α + β1VIX t
2
, 30 + β2DVIX t

2
, 30 + β3VRPt

 + β4SKEWt
 + β5KURTt

 + β6TMSt
 + β7DFSt

 + εt    Model (1) 

ERt,t+h = α + β1PC1t + β2PC2t + β3VRPt
 + β4SKEWt

 + β5KURTt
 + β6TMSt

 + β7DFSt
 + εt         Model (2) 

ERt,t+ h = α + β1Vt + β2(mt
 – Vt) + β3VRPt

 + β4SKEWt
 + β5KURTt

 + β6TMSt
 + β7DFSt

 + εt      Model (3) 

where h = 30, 60 and 90, and the sample is non-overlapping, with the sample period running from 2 

January 1998 to 31 August 2012. The standard errors (S.E.) are obtained based upon the ordinary least 

square (OLS) method.  

 

Variables 

Horizons 

One-month  Two-month  Three-month 

Coeff. S.E. Coeff. S.E. Coeff. S.E. 

Panel A:  Model (1) 

α  0.0061  0.0126 –0.0066  0.0274 0.0097  0.0378 

β1 0.0270  0.1870 0.4818  0.4631 0.3924  0.6235 

β2 0.6220 ** 0.2750 –0.6415  0.7971 2.5645 *** 0.7288 

β3 –0.0062  0.0071 0.0133  0.0166 –0.0656  0.0447 

β4 –0.0027  0.0031 –0.0074  0.0072 –0.0024  0.0107 

β5 -0.0006  0.0006 –0.0012  0.0013 0.0002  0.0023 

β6 –0.0004  0.0033 0.0017  0.0071 0.0058  0.0099 

β7 –0.0150  0.0135 –0.0223  0.0293 –0.0963 ** 0.0418 

No. of Obs. 174 86 57 

R2 0.049 0.041 0.218 

Panel B:  Model (2) 

α  0.0145  0.0171 0.0381  0.0369 0.0771  0.0590 

β1 0.0010  0.0037 0.0086  0.0087 0.0160  0.0133 

β2 0.0180 ** 0.0073 0.0193  0.0216 0.0460 * 0.0251 

β3 –0.0035  0.0070 –0.0009  0.0135 –0.0087  0.0426 

β4 –0.0028  0.0031 –0.0046  0.0070 –0.0014  0.0113 

β5 -0.0005  0.0005 -0.0007  0.0001 0.0001  0.0002 

β6 –0.0013  0.0033 0.0004  0.0071 –0.0018  0.0101 

β7 –0.0170  0.0135 –0.0442  0.0284 –0.0740 * 0.0429 

No. of Obs. 174 86 57 

R2 0.049 0.059 0.134 

Panel C:  Model (3) 

α  0.0038  0.0123 0.0021  0.0257 –0.0039  0.0389 

β1 0.1840  0.2030 0.5360  0.4460 1.1430  0.7270 

β2 0.3610 ** 0.1530 0.8950 ** 0.3900 1.3630 *** 0.4930 

β3 –0.0049  0.0067 –0.0109  0.0149 –0.0316  0.0422 

β4 –0.0019  0.0031 –0.0022  0.0071 –0.0009  0.0110 

β5 -0.0004  0.0005 -0.0004  0.0010 -0.0001  0.0023 

β6 –0.0010  0.0033 –0.0004  0.0070 –1.75e-05  0.0099 

β7 –0.0175  0.0133 –0.0426  0.0280 –0.0776 * 0.0414 

No. of Obs. 174 86 57 

R2 0.0652 0.0821 0.1822 
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Figure 1  Cumulative returns of forward implied variance trading strategies 

Note:  The strategy, based upon turnover rates of 30, 60 and 90 calendar days and an estimation period 

of 180 calendar days, is to take up long (short) positions in the S&P 500 index when estimated 

returns exceed (are below) the critical value x (–x), and do nothing when estimated returns are in 

the interval, [–x, x]. The strategy is based upon the following estimated regression model: 

ERt,t+h = α + β1VIX t
2
, 30 + β2DVIX t

2
, 30 + β3VRPt

 + β4SKEWt
 + β5KURTt

 + β6TMSt
 + β7DFSt

 + εt. 
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Figure 2  Cumulative returns of first and second principal component trading strategies 

Note:  The strategy, based upon turnover rates of 30, 60 and 90 calendar days and an estimation period 

of 180 calendar days, is to take up long (short) positions in the S&P 500 index when estimated 

returns exceed (are below) the critical value x (–x), and do nothing when estimated returns are in 

the interval, [–x, x]. The strategy is based upon the following estimated regression model: 

ERt,t+h = α + β1PC1t + β2PC2t + β3VRPt
 + β4SKEWt

 + β5KURTt
 + β6TMSt

 + β7DFSt
 + εt 
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Figure 3  Cumulative returns of the two-factor SV framework proxy trading strategies 

Note:  The strategy, based upon turnover rates of 30, 60 and 90 calendar days and an estimation period 

of 180 calendar days, is to take up long (short) positions in the S&P 500 index when estimated 

returns exceed (are below) the critical value x (–x), and do nothing when estimated returns are in 

the interval, [–x, x]. The strategy is based upon the following estimated regression model: 

ERt,t+ h = α + β1Vt + β2(mt
 – Vt) + β3VRPt

 + β4SKEWt
 + β5KURTt

 + β6TMSt
 + β7DFSt

 + εt 
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APPENDIX A 

We follow the CBOE methodology to calculate the squared VIX as: 

𝑉𝐼𝑋𝑡,𝜏
2 ≡ 365 ∗ (

2

𝜏
∑

𝛥𝐾𝑖

𝐾𝑖
2 𝑒𝑟𝑓∗

𝜏
365𝑄(𝐾𝑖) −

1

𝜏
(

𝐹

𝐾0

− 1)
2

𝑖

). 

where Ki is the strike price of the ith out-of-the-money (OTM) option; Ki is the 

interval between two strike prices, defined as Ki = (Ki +1 – Ki –1) / 2; in particular, Ki 

for the lowest strike price is simply the difference between the lowest and the next 

higher strike price, i.e., Ki +1 – Ki ; similarly, the Ki for the highest strike price is 

equal to Ki – Ki –1. rf refers to the risk-free rate;  is the time to expiration defined as 

the number of calendar days; Q(Ki) is the midpoint of the bid-ask spread for each 

option with strike price Ki ; F refers to the implied forward index level derived from 

the nearest-the-money index option prices based upon put-call parity; and K0 is the 

first strike price below the forward index level.  

We use the interpolation similar to that suggested by the CBOE to construct the 

VIX term structure with six maturities as: 

𝑉𝐼𝑋𝑡,𝜏
2 = [𝑇1 ∗ 𝑉𝐼𝑋𝑡,𝑇1

2 (
𝑇2 − 𝜏

𝑇2 − 𝑇1
) + 𝑇2 ∗ 𝑉𝐼𝑋𝑡,𝑇2

2 (
𝜏 − 𝑇1

𝑇2 − 𝑇1
)] ∗

1

𝜏
 

where  = 30, 60, 90, 180, 270 or 360 days, and T1 and T2 are the two nearest 

maturities embracing . A similar methodology is employed to calculate the term 

structure of the forward squared VIX as: 

𝐹𝑉𝐼𝑋𝑡,𝑇1,𝑇2

2 = 𝑉𝐼𝑋𝑡,𝑇2

2 (
𝑇2

𝑇2 − 𝑇1
) − 𝑉𝐼𝑋𝑡,𝑇1

2 (
𝑇1

𝑇2 −  𝑇1
) , 𝑇1 < 𝑇2. 


